eRHIC Interaction Region Design

Christoph Montag Brookhaven National Laboratory

Machine Advisory Committee, June 13-14, 2005

Three IR designs

• Two for ring-ring option, $l^*=1.0\,\mathrm{m}$ (ZDR) and $l^*=3.0\,\mathrm{m}$ (new design, preferred due to higher detector acceptance)

• Linac-ring option, $l^* = 5.0 \,\mathrm{m}$

IR design goals

• Beam separation

 Accomodation of synchrotron radiation generated by beam separation

• Beam focusing to small spot sizes to maximize luminosity

Beam separation by a crossing angle

First hadron quadrupole (septum quad) starts approximately 5m from the IP

Required beam separation at septum:

$$12\sigma_p + 20\sigma_e + d_{\text{septum}} \approx 25 \, \text{mm}$$

 \Rightarrow Required crossing angle to provide separation without additional dipoles:

$$\Theta \approx 5 \, \text{mrad}$$

Large crossing angle reduces luminosity by factor ≈ 5 due to long hadron bunches

Crab Crossing

Required transverse deflecting voltage:

$$V_{\perp} = \frac{cE \tan \Theta}{e\omega_{\mathsf{RF}} \sqrt{\beta^* \beta_{\mathsf{crab}}}}$$

250 GeV protons (or 100 GeV/nucleon gold ions) $\Theta = 5 \, \text{mrad}$ $\beta_{\text{crab}} = 400 \, \text{m}, \ \beta^* = 1 \, \text{m}$

$$\omega_{\mathsf{RF}} = 2\pi \cdot 200 \,\mathsf{MHz}$$

$$V_{\perp} = 15 \,\mathrm{MV}$$

For comparison: RHIC RF voltage is 2 MV, KEKB crab cavity voltage is 1.44 MV

Beam separation with zero crossing angle

Horizontal beam sizes at septum need to be kept small to minimize required beam separation

• hadrons:

horizontal beam size at septum $\sigma_{x,h} \propto 1/\sqrt{eta_{x,h}^*}$

- \rightarrow lower limit on $\beta_{x,h}^*$
- → upper limit on luminosity

• electrons:

horizontal beam size at septum $\sigma_{x,e} \propto \sqrt{\epsilon_{x,e}}$, but smaller $\epsilon_{x,e}$ requires larger $\beta_{x,e}^*$ to match beam sizes

- → larger beam-beam parameter
- → luminosity limitation for ring-ring design

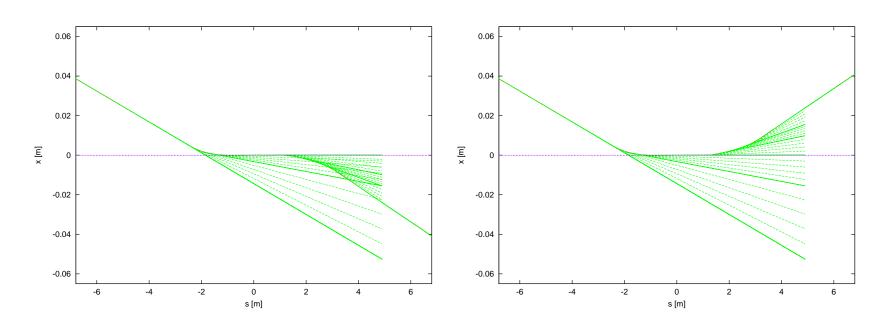
Consequences for IR design

Ring-ring:

- elliptical cross section at the IP $(\sigma_x = 2 \cdot \sigma_y)$
 - → upright (hadron) beam ellipse at the septum
- minimize horizontal electron beam size at septum by proper focusing

Consequences for IR design

Linac-ring:


- ullet Electron beam size at septum is "negligible" due to small ϵ , large eta^*
 - ightarrow available separation at septum can be spend for hadron beam
 - → round beam cross section at IP

Synchrotron radiation issues

Beam separation close to the IP to bring proton low- β quads as close as possible to the IP

- \rightarrow Generation of synchrotron radiation close to the IP, inside the detector volume
- ightarrow SR must be passed safely through the IP and the low-eta electron quads
- ightarrow SR fan must be kept narrow to limit required quadaperture
- \rightarrow separation as close as possible to the IP
- → S-shape IR preferred over C-shape

S-shape IR preferred over C-shape:

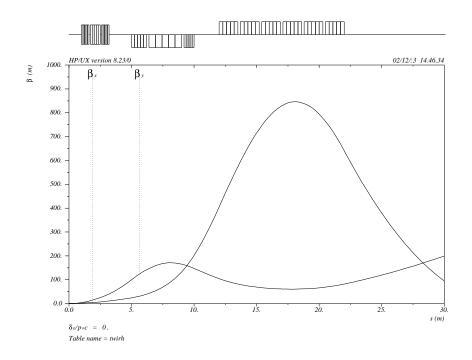
Low- β focusing

Low- β focusing is limited by hourglass effect:

$$\beta > \sigma_{p,s}$$

Hadron bunchlength $\sigma_{p,s}$ is limited by cryo load and IBS: $\sigma_{p,s} \approx 20\,\mathrm{cm}$

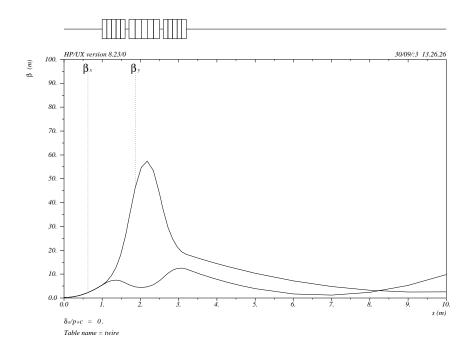
Hadron transverse emittance is given by present RHIC


Keep beams at IP as round as possible to maximize luminosity and minimize beam-beam, but be aware of horizontal beam size at the septum

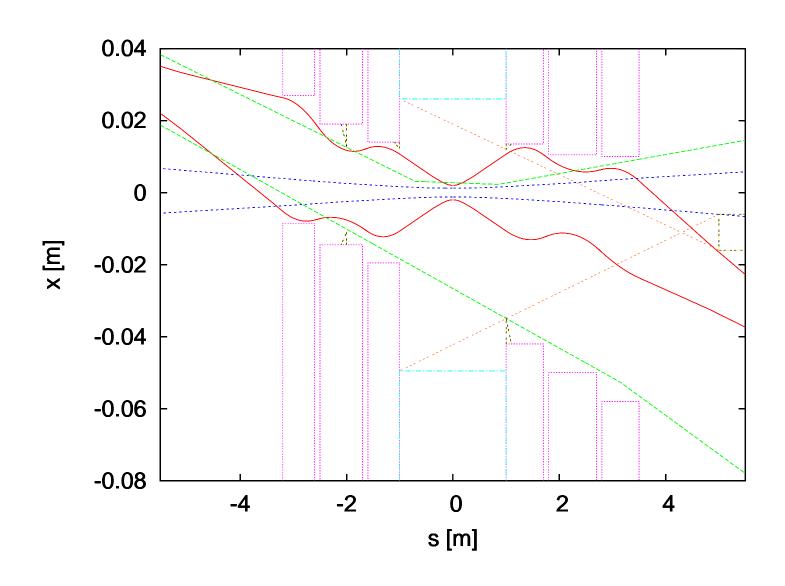
IR parameters for 10 GeV e on 250 GeV p

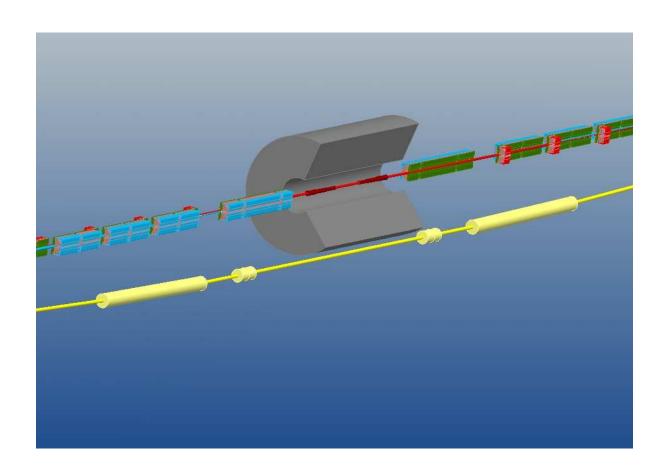
	ring-ring		linac-ring
	$l^* = 1 \text{m}$	$l^* = 3 \mathrm{m}$	$l^* \geq 5 \mathrm{m}$
ϵ_h [nm]	9.5		9.5
ϵ_e (x/y) [nm]	53/9.5		2.5/2.5
β_h (x/y) [m]	1.08/0.27	2.16/0.54	0.27/0.27
β_e (x/y) [m]	0.19/0.27	0.38/0.54	0.99/0.99
σ^* (x/y) [μ m]	100/50	140/70	50/50
N_e /bunch [10 ¹¹]	1.0	1.0	1.4
N_p /bunch [10 ¹¹]	1.0	1.0	1.02.0
ξ_h (x/y)	0.007/0.0035		0.007/0.007
ξ_e (x/y)	0.022/0.08		N/A
$\mathcal{L} [10^{33} \text{cm}^{-2} \text{sec}^{-1}]$	0.44	0.22	1.252.5

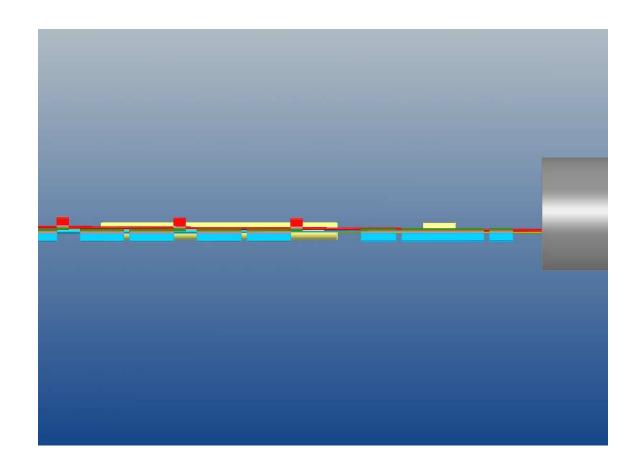
Ring-ring IR lattice, $l^* = 1 \,\mathrm{m}$


Hadron doublet:

Normal-conducting septum quads, 1.0 Tesla pole tip field

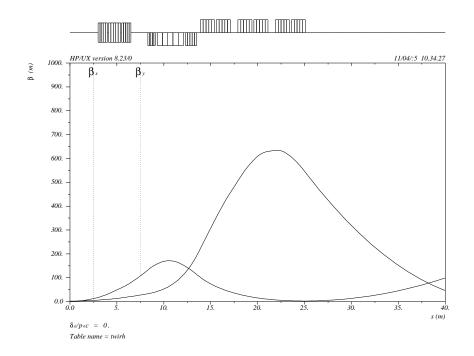

Ring-ring IR lattice, $l^* = 1 \,\mathrm{m}$


Electron triplet with dipole windings, inside detector:

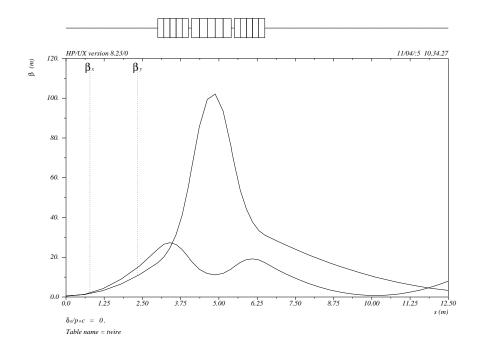


Superconducting quads, ≈ 2 Tesla peak field

Ring-ring IR, $l^* = 1 \,\mathrm{m}$

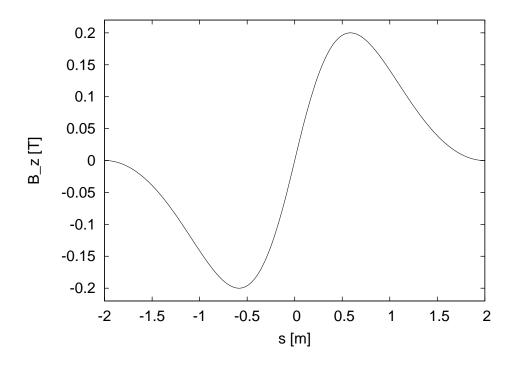


Ring-ring IR lattice, $l^* = 3 \,\mathrm{m}$

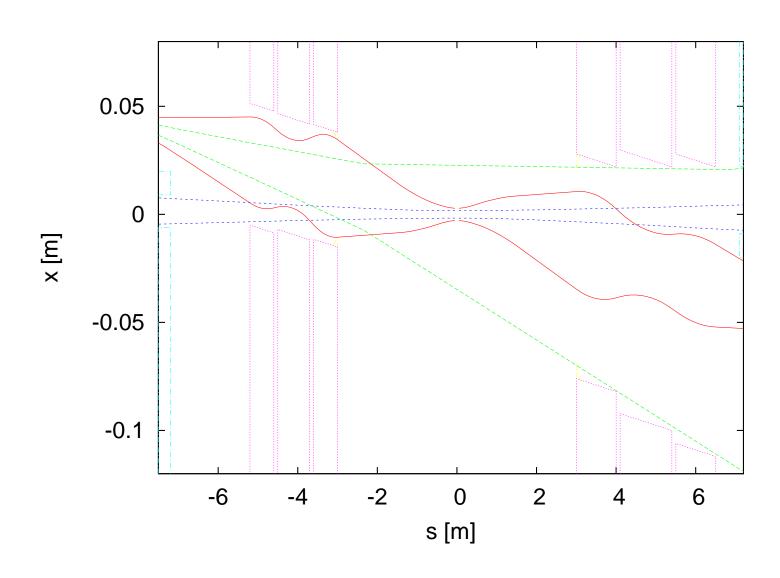

Hadron doublet:

Normal-conducting septum quads, 1.0 Tesla pole tip field

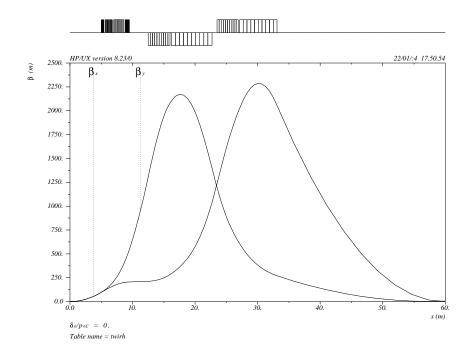
Ring-ring IR lattice, $l^* = 3 \,\mathrm{m}$


Electron triplet outside detector:

Superconducting quads, \approx 2 Tesla peak field


Ring-ring IR lattice, $l^* = 3 \,\mathrm{m}$

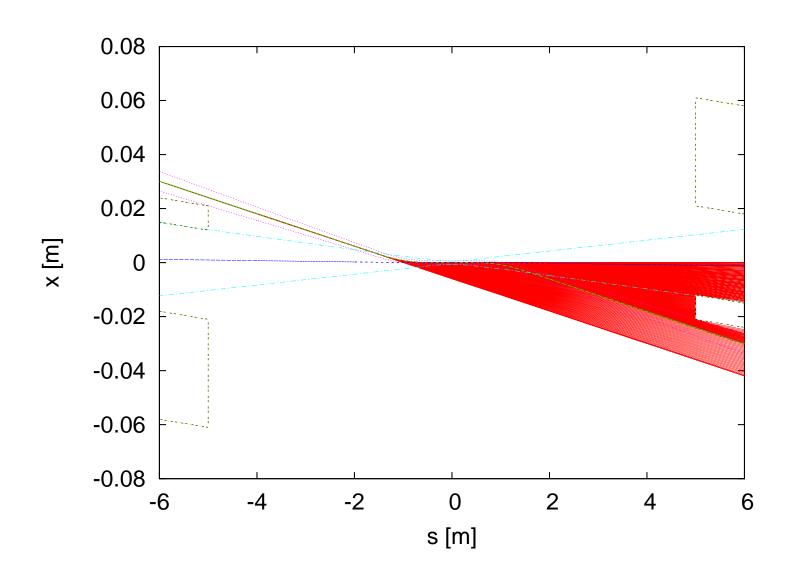
Separator dipole field superimposed on detector solenoid (Detector Integrated Dipole, DID)


0.2 Tm integrated field for 6 mrad separation angle

Ring-ring IR, $l^* = 3 \,\mathrm{m}$

Linac-ring IR lattice

Hadron triplet:


Normal-conducting septum quads, 1.0 Tesla pole tip field

Linac-ring IR lattice

Electrons:

- Focusing elements (normal-conducting) can be far away from the IP (\geq 10 m) due to tiny emittance and relatively large β^*
- Separation by Detector Integrated Dipole (DID)

Linac-ring IR

Conclusion

- Design considerations and limitations for eRHIC electron-ion IR have been presented.
- IR design solutions for both ring-ring and linac-ring option of eRHIC exist.
- Linac-ring option provides significantly higher luminosity for 10 GeV e on 250 GeV p.
- SR background simulations being worked on.